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Abstract

We develop a formulation for the single-fluid/two-temperature equa-
tions for simulating two-species, compressible, non-equilibrium plasma
flows. The divergence-free condition of the magnetic field is enforced
via the characteristic decomposition of an extended nine-wave system.
The source terms are modified appropriately to improve energy and
momentum conservation accuracy. A spectral/hp element algorithm is
employed in the discretization combined with a discontinuous Galerkin
formulation for the advective and diffusive contributions. The for-
mulation is conservative, and monotonicity is enforced by appropri-
ately lowering the spectral order around discontinuities. A new MHD
flux introduced here is the MHD-HLLC (Harten-Lax-van Leer Contact
wave) flux that preserves monotonicity and resolves contact disconti-
nuity better. Exponential convergence is demonstrated for a magneto-
hydrostatic problem. Two tests are presented using the new MHD-
HLLC flux. Also, the differences between the single-temperature and
the two-temperature models are presented for two-dimensional plasma
flows around bluff bodies are simulated.
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1 Introduction

Plasmas can be modelled accurately using kinetic theory, especially partially
ionized plasmas. However, this involves solutions of the seven-dimensional
Boltzmann equation coupled with Maxwell’s equations, which is prohibitively
expensive. Particle based methods, such as DSMC, are possible alternatives
but for efficiency they need to be coupled with continuum fluid equations.
Such hybrid methodologies have been used successfully recently in the sim-
ulation of ion thruster plumes, but hybrid kinetic-continuum methods are
still under development [1, 2], and open issues with the DSMC remain the
treatment of electrons as well as the modelling of charged particle collisions.

Continuum-based, i.e. purely fluid approaches, have been successful in
describing the macroscopic features of high density plasmas in many diverse
applications [3, 4, 5, 6, 7, 8, 9, 10]. They are derived from the Boltzmann
equation by taking appropriate moments for each species. The standard
mathematical description is that of single-fluid MHD with magnetic and gas
dynamic viscous effects. However, a single-fluid MHD description has its lim-
itations as it cannot account for local thermodynamic non-equilibrium effects
and cannot consider non-neutral regions and sheath interactions. To this end,
two-fluid plasma models [11] and corresponding solvers have been under de-
velopment more recently [12]. They can overcome certain limitations of the
single-fluid MHD model such as the Hall effect and diamagnetic terms, which
model contributions to ion current and the finite Larmor radius of the plasma
constituents. However, they still assume local thermodynamic equilibrium
within each fluid. From the computational standpoint, the two-fluid model
is much more complex system to solve, especially for large values of the Hall
parameter, and approximate Riemann solvers are still under development
[12].

In between the single-fluid and the two-fluid models for plasmas is the two-
temperature model. It can account partially for the energy transfer between
heavy species and electrons, and it is computationally more tractable. There
can be many applications for which the electron temperature differs from the
heavy particle temperature [13, 14, 15]. For example, experiments in [13]
with boundary layers of pure NaK seeded argon showed that the electron
temperature was considerably higher than the gas temperature. Moreover,
the electrical conductivity and other transport coefficients in the conservation
laws depend strongly on the electron temperature. This is also true for
emerging applications in microfluidics, such as micro-pulsed plasma thrusters
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(micro-PPTs) where viscous effects dominate, and the flow may be in a
transitional state.

The objective of the current work is to develop robust high-order al-
gorithms for a single-fluid/two-temperature plasma extending our previous
work on the standard MHD model [16]. The use of high-order accuracy
addresses effectively the small-scale requirements of compressible MHD tur-
bulence [17], as well as the extra resolution required in long-time integration
[18]. In addition to our work, other recent efforts to develop effective high-
order methods for plasma flows have been reported in [19, 20, 21].

Discontinuous Galerkin methods [22] address two of the main difficulties
in employing high-order discretization for the solution of hyperbolic conser-
vation laws are:

1. Maintaining monotonicity for non-smooth solutions, and

2. preserving conservativity.

In the MHD framework, such difficulties are compounded by the impo-
sition of the divergence-free condition for the magnetic field, which results
in a loss of the hyperbolicity of the ideal MHD equations. This condition
has been dealt with by employing staggered grids in the work of Evans &
Hawley [23], which was extended by Peterkin et al. [5]. However, such an
approach cannot be easily incorporated in high-order discretizations. Al-
ternative approaches include the operator-splitting algorithm proposed by
Zachary, Malagoli & Colella [4] and the the development of extended Rie-
mann solvers by Powell [6]; the latter is easily extended to multi-dimensions
and also to high-order discretization. In some approaches, the divergence-
free condition is not imposed directly during time-stepping but the initial
conditions are projected in the divergence-free space. Assuming that the flux
of divergence of the magnetic field satisfies a homogeneous discrete parabolic
equation with homogeneous boundary conditions, then this will lead to zero
discrete divergence at all times. However, in practice, discretization errors
or other inconsistencies may trigger large divergence errors for such cases.

In this paper we extend the approximate Riemman solver of Powell [6]
to a nine-wave system to account for the divergence-free condition and the
extra electron energy equation. Compared to the Riemann solver [6] and
also our previous work in [16], here we modify the source terms to preserve
conservativity and enhance accuracy. We employ a spectral/hp element dis-
cretization [24] based on tensor-product polymorphic elements for the mesh

3



macro-skeleton. The spectral order of the Jacobi polynomials in the trial ba-
sis is variable in order to accommodate different solution requirements, i.e.
low-order for shock capturing or high-order boundary layer resolution.

To preserve pressure positivity, a MHD-HLLC flux [25] is implemented in
the discontinuous Galerkin method for solving compressible plasma flows. In
addition to capturing the effects of contact waves, the MHD-HLLC flux also
resolves Alfven and slow waves better than the HLL (Harten-Lax-van Leer)
flux and the Lax-Friedrichs flux.

As a model problem we use plasma flow past a cylinder. Depending
on the specific conditions, we find that the electron temperature can be
substantially different than the temperature of ions, and correspondingly
this may affect the velocity field. To appreciate the differences we compare
the two-temperature model with the standard MHD model under the same
wall thermal condition.

The paper is organized as follows: In section 2 we present the formulation
and briefly summarize details of the implementation. In section 3, we first
test the convergence rate of the algorithm for an analytical problem. We then
present tests using the new MHD-HLLC flux, and subsequently we simulate
plasma flow past a cylinder in the subsonic and supersonic regimes. Finally,
we conclude in section 4 with a few remarks.

2 TWO-TEMPERATURE PLASMA EQUATIONS

2.1 Governing Equations

The non-dimensional governing equations for single-fluid/two-temperature
plasma for compressible magneto-hydrodynamics (MHD) can be expressed
in conservative form as (see derivation in Appendix B):

1. Mass Conservation:

∂ρ

∂t
= −∇ · (ρv) (1)

2. Momentum Conservation:

∂(ρv)

∂t
= −∇ · (ρvvt −BBt + (p +

1

2
|B|2)I − 1

Svi

τi − 1

Sve

τe) (2)
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3. Magnetic Field:

∂B

∂t
= −∇× (B× v +

1

Sr

∇×B) (3)

4. Total Energy Conservation:

∂Etot

∂t
= −∇ · [(Etot + p)v + (

1

2
|B|2I−BBt) · v − 1

Svi

v · τi − 1

Sve

v · τe

+
1

Sr

(B · ∇B−∇(
1

2
|B|2))− γ

SvePre

∇Te − γ

SviPri

∇Ti]

(4)

5. Electron Internal Energy Conservation:

∂εe

∂t
= −∇ · [(εe + pe)v − γ

SvePre

∇Te]

+ v · ∇pe +
1

Sve

τe : ∇v +
1

Sr

(∇×B) · (∇×B)

(5)

6. Magnetic Flux Constraint:

∇ ·B = 0 (6)

7. Ohm’s Law:
E = ηJ− v ×B (7)

Here we define:

Etot =
p

(γ − 1)
+

1

2
(ρv · v + B ·B), p = pi + pe, εe =

Pe

γ − 1
(8)

The stress tensor for ions and electrons is defined as:

τi = (∂jvii + ∂ivij)−
2

3
∇ · viδij, τe = (∂jvei + ∂ivej)−

2

3
∇ · veδij (9)

All other parameters are as defined in table 1. The subscript ‘i’ denotes
ions while the subscript ‘e’ denotes electrons.
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The above Ohm’s law is simplified from the generalized Ohm’s law in the
limit of small Larmor radius approximation. The generalized Ohm’s law can
be expressed as:

E = ηj + v ×B +
j×B

ne
− ∇pe

ne
(10)

and thus
j×B/ne

v ×B
∼ ∇pe/ne

v ×B
∼ rLi

L
(11)

where rLi is the ion Larmor radius and L is the scale-length of the fluid
motion. We conclude that the second and third terms on the right-hand-
side of equation (10) can be neglected if the ion Larmor radius is very small
compared to the characteristic length scale of the fluid motion, i.e., rLi/L <<
1. Specifically, when we consider the length scale of the fluid motion to be
very small and close to the ion Larmor radius, then we have to include the
two additional terms in equation (10) and use the generalized Ohm’s law
instead.

Alternatively, in flux form, the above conservation equations can be expressed
compactly as

∂U

∂t
= −∂FIdeal

x

∂x
− ∂FIdeal

y

∂y
− ∂FIdeal

z

∂z
(12)

+
∂FV isc

x

∂x
+

∂FV isc
y

∂y
+

∂FV isc
z

∂z
+ SMHD (13)

where all flux and source terms are defined in detail in the Appendix A. The
state vector is defined as: U = (ρ, ρu, ρv, ρw, Bx, By, Bz, Etot, εe)

2.2 The ∇ ·B = 0 Constraint

The presence of the ∇ · B = 0 constraint implies that the equations do not
have a strictly hyperbolic character. It has been shown in [26] that even a
small divergence in the magnetic fields can dramatically change the character
of results from numerical simulations. In our work, we adopt an approach
which was developed originally by Powell in [6]. The idea is to re-formulate
the Jacobian matrix to include a “ninth-wave”, i.e., the divergent mode that
corresponds to velocity u. This way the degeneracy associated with the
divergence-free condition is avoided while the rest of the eigenvalues of the
Jacobian remain the same.
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The primitive Jacobian matrix Ap for single-fluid/one-temperature equa-
tions has the form, in three-dimensions,

Ap =




u ρ 0 0 0 0 0 0

0 u 0 0 −Bx

ρ
By

ρ
Bz

ρ
1
ρ

0 0 u 0 −By

ρ
Bx

ρ
0 1

ρ

0 0 0 u −Bz

ρ
0 Bx

ρ
0

0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0
0 Bz 0 −Bx −w 0 u 0
0 γp 0 0 −(γ − 1)u ·B 0 0 u




Considering that p = pi + pe, then the primitive Jacobian matrix Ap for
single-fluid/two-temperature equations in three-dimensions can be described,
i.e.

Ap =




u ρ 0 0 0 0 0 0 0

0 u 0 0 −Bx

ρ
By

ρ
Bz

ρ
1
ρ

0

0 0 u 0 −By

ρ
Bx

ρ
0 1

ρ
0

0 0 0 u −Bz

ρ
0 Bx

ρ
0 0

0 0 0 0 0 0 0 0 0
0 By −Bx 0 −v u 0 0 0
0 Bz 0 −Bx −w 0 u 0 0
0 γp 0 0 −(γ − 1)u ·B 0 0 u 0
0 γpe 0 0 0 0 0 0 u




To modify the governing equations so as to make Ap non-singular, using
Powell’s criteria presented in [6], Ap is modified to be A′

p:

A′
p =




u ρ 0 0 0 0 0 0 0

0 u 0 0 0 By

ρ
Bz

ρ
1
ρ

0

0 0 u 0 0 Bx

ρ
0 1

ρ
0

0 0 0 u 0 0 Bx

ρ
0 0

0 0 0 0 u 0 0 0 0
0 By −Bx 0 0 u 0 0 0
0 Bz 0 −Bx 0 0 u 0 0
0 γp 0 0 0 0 0 u 0
0 γpe 0 0 0 0 0 0 u
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This modification effectively corresponds to adding a source term propor-
tional to ∇ ·B,

SPowell = −(∇ ·B)(0, Bx, By, Bz, u, v, w,u ·B, 0)T

to the right-hand-side of all evolution equations. We note that this source
term does not shift the physical solution since ∇ · B is imposed. However,
some local accumulations may occur, especially at stagnation points for which
v = 0. In these cases, it may be necessary to add the HelmHoltz projection,
see [26].

Next, we show how we need to modify these source terms in order to
better maintain pressure positivity. In solving the MHD system, the pressure
is a derived variable. Specifically, it is obtained by subtracting off the kinetic
energy and magnetic energy from the total energy. However, in applications
of micropropulsion, magneto-spheric physics and astrophysics, the pressure
can be several orders of magnitude smaller than either the kinetic energy
or the magnetic energy. Thus, small discretization errors in the total energy
can produce situations where the pressure might become negative. This leads
to an unacceptable physical situation. As long as the regions in front of a
magneto-sonic shock have positive pressure, negative pressures would not be
produced in magneto-sonic shocks.

Janhunen [27] has reported that the solution of the Riemann problem for
Powell’s equations for left- and right-states with positive fluid pressures may
contain unphysical intermediate state with negative fluid pressure. pressure
positivity, as well as energy and momentum conservation could be regained
by discarding the source terms in the energy and momentum equations, so
that the source term proportional to ∇ ·B becomes:

S = −(∇ ·B)(0, 0, 0, 0, u, v, w, 0, 0)T ,

2.3 Implementation of the Inviscid Terms

We evaluate the inviscid fluxes and their derivatives in the interior of the
elements and add correction terms (jumps) for the discontinuities in the
flux between any two adjacent elements. In order to evaluate the Euler
flux at an element interface, we use an one-dimensional Riemann solver to
supply an upwinded flux there, see below. At a domain boundary, we provide
far field conditions and treat the exterior boundary as the boundary of a
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“ghost” element. This way we can use the same Riemann solver at all element
boundaries.

We linearize the one dimensional flux FIdeal
x in the normal direction to

a shared element boundary using the average of the state vector at either
side of the element boundary. That is, since FIdeal

x is a nonlinear function of
the state vector, we use the average state to form an approximation to the
Jacobian of the flux vector Ac.

The Jacobian matrix for the flux vector of the evolution equations ex-
pressed in primitive variables is simpler than in the conserved form. Thus,
we will perform the linearization about the primitive form and transform to
the conserved form. The left and right eigenvectors of the primitive Jacobian
matrix Ap, similar to the results shown in [6], are:
Entropy wave:

λe = u

le = (1, 0, 0, 0, 0, 0, 0,− 1

a2
, 0)

re = (1, 0, 0, 0, 0, 0, 0, 0, 0)t

Alfven Waves:

λa = u± Bx√
ρ

la =
1√
2
(0, 0,−βz, βy, 0,± βz√

ρ
,∓ βy√

ρ
, 0, 0)

ra =
1√
2
(0, 0,−βz, βy, 0,±βz

√
ρ,∓βy

√
ρ, 0, 0)T

Fast waves:

λf = u± cf

lf =
1

2a2
(0,±αfcf ,∓αscsβxβy,∓αscsβxβz, 0,

αsβya√
ρ

,
αsβza√

ρ
,
αf

ρ
, 0)

rf = (ραf ,±αfcf ,∓αscsβxβy,∓αscsβxβz, 0, αsβya
√

ρ, αsβza
√

ρ, αfγp, αfγpe)
t

Slow waves:

λs = u± cs

9



ls =
1

2a2
(0,±αscs,±αfcfβxβy,±αfcfβxβz, 0,−αfβya√

ρ
,−αfβz√

ρ
,
αs

ρ
, 0)

rs = (ραs,±αscs,±αfcfβxβy,±αfcfβxβz, 0,−αfβya
√

ρ,−αfβza
√

ρ, αsγp, αsγpe)
t

Compared to [6], we have an extra wave which corresponds to the electron
energy:

lee = (0, 0, 0, 0, 0, 0, 0, 0, 1)

ree = (−γpe

ρ
, 0, 0, 0, 0, 0, 0, 0, 1)t

Here:

(a∗)2 =
γp + B ·B

ρ

c2
f =

1

2

(
(a∗)2 +

√
(a∗)4 − 4

γpB2
x

ρ2

)
, c2

s =
1

2

(
(a∗)2 −

√
(a∗)4 − 4

γpB2
x

ρ2

)

α2
f =

a2 − c2
s

c2
f − c2

s

, α2
s =

c2
f − a2

c2
f − c2

s

βx = sgn(Bx), βy =
By√

B2
y + B2

z

, βz =
Bz√

B2
y + B2

z

.

We can transform between the primitive variables W and conserved variables
U with the following transform:

Ac =
∂U

∂W
Ap

∂W

∂U

where
U = (ρ, ρu, ρv, ρw,Bx, By, Bz, Etot, ρεe)

are the conserved variables, and

W = (ρ, u, v, w, Bx, By, Bz, p, pe)

are the primitive variables. This gives:
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∂U

∂W
=




1 0 0 0 0 0 0 0 0
u ρ 0 0 0 0 0 0 0
v 0 ρ 0 0 0 0 0 0
w 0 0 ρ 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

u·u
2

ρu ρv ρw Bx By Bz
1

γ−1
0

0 0 0 0 0 0 0 0 1
γ−1




and

∂W

∂U
=




1 0 0 0 0 0 0 0 0
−u

ρ
1
ρ

0 0 0 0 0 0 0

−v
ρ

0 1
ρ

0 0 0 0 0 0

−w
ρ

0 0 1
ρ

0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

γ̄
2
u · u −γ̄u −γ̄v −γ̄w −γ̄Bx −γ̄By −γ̄Bz γ̄ 0
0 0 0 0 0 0 0 0 γ̄




where γ̄ = γ − 1.

E
u

F(u )

 f(u ,u )
~

u

i e

i e

i

Figure 1: Interface conditions between two adjacent triangles.

We are now in a position to evaluate different fluxes at the element bound-
aries. The formulations of different fluxes we employ are:
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1. Flux employed in [28]:

F̂upwind(UI ,UE) =
1

2
[F(UI) + F(UE)− ∂U

∂W

k=9∑

k=1

αk|λk|rk] (14)

αk = lk · ∂W

∂U
(UE −UI),

2. Lax-Friedrichs flux:

F̂Lax−Friedrichs(UI ,UE) =
1

2
[F(UI) + F(UE)−Dmax(UE −UI)] (15)

where Dmax = max(|λk|) - maximal absolute value of the eigenvalues,
‘I’ denotes interior and ‘E’ denotes exterior of the element (see figure
1). Here, the lk and rk are the ordered left and right eigenvectors of
the primitive Jacobian matrix. We have to apply the ∂U

∂W
operator to

the right eigenvectors to calculate the conserved flux. The λ′ks are the
wave speeds associated with the eigenvectors.

A new MHD flux introduced here is based on the MHD-HLLC flux
presented in [25] that can preserve positivity and improve resolution,
especially at contact interfaces.

3. MHD-HLLC interface flux:

F̂HLLC(UI ,UE) =





FI if SI > 0

F∗I if SI ≤ 0 ≤ SM

F∗E if SM ≤ 0 ≤ SE

FE if SE < 0

(16)

where F∗I and F∗E are defined as:




F∗I = F∗ − SI(SE − SM)

(SE − SI)
∆U∗,

F∗E = F∗ +
SE(SM − SI)

(SE − SI)
∆U∗.

(17)
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with F∗ = SEFI−SIFE+SISE(UE−UI)
SE−SI

and ∆U∗ = U∗
E −U∗

I . The wave-speeds
SI , SM and SE are defined as:





SI = min[λl(UI), λl(U
Roe)],

SM =
ρIvnI(vnI − SI)− ρEvnE(vnE − SE) + pI − pE + (|B|2I − |B|2E)/2

ρI(vnI − SI)− ρE(vnE − SE)
,

SE = min[λm(UE), λm(URoe)].
(18)

Here λl(U
Roe) and λm(URoe) are the smallest and largest eigenvalues re-

spectively, of the Roe-averaged matrix. Roe-averaged matrix A(Ū), which
satisfies the following property:

F(UE)− F(UI) = A(Ū)(UE −UI) (19)

Correspondingly, λl(UI) and λm(UE) are the smallest and largest eigen-
values of the left and right states of the matrix Ap. The positivity of pressure
and density using the MHD-HLLC flux has been demonstrated in [25]. Ana-
lytic results have shown that the flux resolves isolated contact discontinuities
and fast waves accurately.

2.4 Implementation of the Viscous Terms

The viscous terms are evaluated in two steps. First, we obtain the spatial
derivatives of the primitive variables using the discontinuous Galerkin ap-
proach. Then, we repeat the process for each of the viscous fluxes using
these derivatives. If we employ Dirichlet boundary conditions for the mo-
mentum and energy variables, we set these terms explicitly after the fluxes
have been evaluated and then project the result using the orthogonal basis.
Here we use the average of the variables and fluxes at the interface. This
approach leads to sub-optimal performance at low polynomial order p. How-
ever it does not make much difference at high polynomial order p. For more
details, see [16].
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3 Convergence and Simulations

3.1 Convergence Test

A simple test for the compressible MHD component of the algorithm we
developed is to consider a steady irrotational magnetic field and zero velocity.
The test was performed as an initial value problem, and the following exact
solution

ρ = 1, u = 0, v = 0

E = 19.84 +
e(−2πy)

2
, Ee = 9.92

Bx = −cos(πx)e(−πy), By = sin(πx)e(−πy)

was used as the boundary conditions and as the initial condition. This so-
lution but without the part concerning Ee was derived by Priest [29]. The
irrotational magnetic field implies that the Lorentz force is zero so the mo-
mentum equations are trivially satisfied. The magneto-viscous term is zero
and the v × B term is also zero. Thus, the compressible single-fluid/two-
temperature MHD equations are satisfied. Here, we take mi = 1836me [30]
and we set the interaction term Φ = 0 to make the problem simpler (mi is
the ion mass and me is the electron mass).

The domain and hybrid discretization we used are depicted in figure 2.
We also show that the approximation error decreases exponentially with in-
creasing expansion order for all the three forms of error considered in the L∞
, H1, and L2 norms.

3.2 Numerical Tests for the MHD-HLLC Interface Flux

To verify our two-dimensional discontinuous Galerkin solver with the MHD-
HLLC flux, we use the one-dimensional benchmark MHD shock-tube problem
developed by Brio and Wu [31]. The one-dimensional Riemann problem is
given for x ∈ [−1, 1]:

Up = (ρ, ux, uy, uz, By, Bz, p) =





(1.000, 0, 0, 0, +1, 0, 1.0) for x < 0

(0.125, 0, 0, 0,−1, 0, 0.1) for x > 0
(20)
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Figure 2: Magneto-hydrostatic test case. Top-Left: spectral element hybrid
mesh consisting of 38 triangular elements and 22 rectangular elements. Top-
Right: Magnetic streamlines of steady solution; Bottom: Dependence of
steady state log-error of magnetic field Bx on expansion spectral order.15



with Bx = 0.75 and γ = 2. The solution at t = 0.2 is shown in figure 3, which
includes the left-moving waves: the fast rarefaction wave, the intermediate
shock attached by a slow rarefaction wave; and, the right moving waves:
the contact discontinuity, a slow shock, and a fast rarefaction wave. The
results are obtained by the two-dimensional discontinuous Galerkin solver on
a mesh, consisting of 800 square elements. The solid line is the result using
the MHD-HLLC flux ,see equation (16), the dashed line is obtained using
the Lax-Friedrichs flux, see equation (15). We can see the MHD-HLLC flux
gives much sharper resolution, especially at the contact interface.

The second Riemann problem is given by:

Up = (ρ, ux, uy, uz, By, Bz, p) =





(1.000, 0, 0, 0, +1, 0, 1000.0) for x < 0

(0.125, 0, 0, 0,−1, 0, 0.1) for x > 0
(21)

with Bx = 0 and γ = 2. This problem is used to evaluate the code for
high Mach number flow. If one regards the term p + 1

2
|B|2 as the “hydrody-

namic pressure”, the system becomes a standard hydrodynamical Riemann
problem. The computational domain is taken to be [-1,1] with 400 square el-
ements. The solution at t = 0.012 is shown in figure 4, which shows that the
MHD-HLLC flux can resolve the high Mach number waves more accurately
than the Lax-Friedrichs flux.

3.3 Flow Past a Cylinder

Next, we consider the problem of plasma flow with uniform free stream prop-
erties past a circular cylinder. As the mass and thermal properties for elec-
trons and ions are quite different, at the final steady state, they will have
quite different temperature distributions around the cylinder. Here we con-
sider electrons and ions having the same temperature over the cylinder sur-
face as the free stream temperature. To simplify our calculation, we set the
atomic number of ions Z = 1 and mi = 1836me. We perform simulations us-
ing unstructured meshes for all the subsonic and transonic cases; it is shown
in figure 5 top, consisting of 490 triangular elements; the mesh used for the
supersonic case is shown in figure 5 bottom, consisting of 1132 triangular
elements.

h-refinement is employed around the shock, based on the following crite-
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Figure 3: 1D coplanar MHD Riemann problem: Solid line: MHD-HLLC flux;
Dashed line: Lax-Friedrichs flux. (a): ρ; (b): p; (c): Ux; (d): Uy; (e): By.

17



(a) (b)

x

ρ

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MHD-HLLC Flux
Lax-Lax Friedrichs Flux

x
P

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
10-1

100

101

102

103 MHD-HLLC Flux
Lax-Lax Friedrichs Flux

(c) (d)

X

B
y

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 MHD-HLLC Flux
Lax-Lax Friedrichs Flux

X

U
x

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0

5

10

15

20

25

30

35 MHD-HLLC Flux
Lax-Lax Friedrichs Flux

Figure 4: High Mach number Riemann problem: Solid line: MHD-HLLC
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Figure 5: Top : Computational domain for plasma flow past a circular cylin-
der simulations at Mach number 0.7 and Reynolds number 100. Top-Left :
Entire domain. Top-Right : Zoom around the cylinder. Bottom : Computa-
tional domain at Mach number 2 and Reynolds number 100. Bottom-Left :
Entire domain. Bottom-Right : Zoom around the cylinder.
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Figure 6: Left: Variable order computational domain; Right: Variable order
around the cylinder.

rion (the gradient of density in the direction of the flow):

∇(ρ) ·V > M ; (22)

where M is an adjustable parameter. The elements chosen are split into
4 smaller elements. Figure 6 plots the computational domain showing the
variable polynomial order; p-refinement is used away from the shock. To
preserve solution monotonicity, we lower the spectral order around discon-
tinuities appropriately. The polynomial order p is determined based on the
area of the element but more sophisticated criteria can be used to find the
optimal p. Due to the stability issue, first-order schemes or limiters have to
be implemented around the shock. Since limiters will give more smearing
results, we prefer to use low order elements in conjunction with h-refinement
close to the shock.

In all the cases, we set Re = 100, Bx = 0.1 and By = 0.0 at the inflow,
where Bx is the x-component of the magnetic field and By the y-component
of the magnetic field. The two simulations were run with polynomial order
p = 5 until the flow reaches a time-periodic or a steady state; p-refinement
tests have shown only very small difference in the results.

In figures 7 and 8, we plot the ion and the electron temperature contours of
the instantaneous field. A von Karman vortex street develops in the subsonic
regime. However, the flow is steady at supersonic states as shown in figure
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1.78427
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1.4292

Figure 7: Instantaneous nondimensional temperature contours for flow past
a circular cylinder at Mach number 0.7, Reynolds number 100 and cylinder
wall temperature Ti = Te = 1.8367. Left : Ion temperature contours. Right
: Electron temperature contours.
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Figure 8: Instantaneous nondimensional temperature contours for flow past
a circular cylinder at Mach number 2, Reynolds number 100 and cylinder
wall temperature Ti = Te = 0.225. Left : Ion temperature contours. Right :
Electron temperature contours.
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8. In particular, we have performed several simulations for the compressible
flow, using the one-temperature model and the two-temperature model in
order to present differences in the forces and frequency.

Specifically, in order to compare the one-temperature model with the
two-temperature model, we integrate the flow field over one time period
and obtain the time-averaged flow field. In figures 9 and 10, we plot the
time-averaged contour lines of the ion and the electron temperature using
the two-temperature model and the temperature contours using the one-
temperature model. Also, we present temperature profiles along a line on
top of the cylinder aligned with the vertical axis, as shown in figure 11, to
compare the temperature distributions. In figures 12 and 13, we plot the
normal profiles of temperature in one-temperature model and profiles of the
electron and the ion temperature in two-temperature model starting at the
top of the cylinder at Mach number 0.7 and 2. From these figures, we can
see that the results of one-temperature model are quite different from the
ones of the two-temperature model. In figures 12 and 13, electrons and
ions have the same temperature on the cylinder surface and the electron
temperature increases while the ion temperature decreases in the direction
away from the cylinder surface. From figures 9 and 12, we can see that
the ion temperature is larger than the electron temperature ahead of the
cylinder at Mach number 0.7. However the electron temperature is larger
than the ion temperature on the two sides of cylinder. Figure 13 shows the
electron temperature is smaller than the ion temperature on the two sides
of cylinder at Mach number 2. Generally,temperature profiles obtained from
one temperature model is similar to the ion temperature rather than the
electron temperature. The relation between two temperatures model and
one temperature model can be given as: T = Ti+Te

2
, if ions and electrons

have the same number density ni = ne.

4 SUMMARY

We have developed a discontinuous Galerkin solver to model two-temperature
plasmas as part of a hierarchical modelling approach and a compromise be-
tween single-temperature and two-fluids models. We have demonstrated
spectral convergence for an analytical problem and also demonstrated the
robustness of the method in dealing with shocks without the use of flux
limiters or artificial viscosity terms. The issue of preserving positivity is
addressed by introducing a new interface flux, the MHD-HLLC flux.
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Figure 9: Left : Time average contour lines of ion nondimensional temper-
ature (upper half plane) and electron nondimensional temperature (lower
half plane) at Mach number 0.7, Reynolds number 100 and cylinder wall
temperature Ti = Te = 1.8367 using the two-temperature model. Right :
Time average contour lines of nondimensional temperature using the one-
temperature model.
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Figure 10: Left : Time average contour lines of ion nondimensional tempera-
ture (upper half plane) and electron nondimensional temperature (lower half
plane) at Mach number 2, Reynolds number 100 and cylinder wall tempera-
ture Ti = Te = 0.225 using the two-temperature model; Right : Time aver-
age contour lines of nondimensional temperature using the one-temperature
model.

Cut

Figure 11: Location where profiles of temperature along the line shown
aligned with the vertical axis are taken. Contours of ion temperature at
Mach number 0.7 are shown in the background.
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Figure 12: Normal profiles of temperature nondimensionalized by cylinder
wall temperature at Mach number 0.7, Reynolds number 100 and cylin-
der wall temperature Ti = Te = 1.8367. Solid line: Ion temperature
from two-temperature model; Dotted line: Electron temperature from two-
temperature model; Dashed line: Temperature from one-temperature model.
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Figure 13: Normal profiles of temperature nondimensionalized by cylin-
der wall temperature at Mach number 2, Reynolds number 100 and cylin-
der wall temperature Ti = Te = 0.225. Solid line: Ion temperature
from two-temperature model; Dotted line: Electron temperature from two-
temperature model; Dashed line: Temperature from one-temperature model.
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Examination of contours of the divergence of the magnetic field in flow
past a cylinder revealed some non-zero values in the region around the rear
stagnation point. However, this was not growing in time and thus no numer-
ical instabilities were induced even after long-time integration. This diver-
gence field can be totally eliminated by occasional Helmholtz decomposition
of the magnetic flux vector, see [16] and [26]. We are currently developing
a discontinuous Galerkin method for two-fluids plasmas and we will report
those results in a future publication.

APPENDICES

A: Detailed flux terms in single-fluid/two-temperature
equations

We present here in detail the flux terms involved in the governing equations
of the single-fluid/two-temperature plasma. Many of the parameters used
are listed in table 1.

FIdeal
x = (ρu, ρu2 −B2

x + p̄, ρuv −BxBy, ρuw −BxBz, 0, uBy − vBx, uBz − wBx,

(E + p̄)u− (v ·B)Bx, (εe + pe)u)T

FIdeal
y = (ρv, ρvu−ByBx, ρv2 −B2

y + p̄, ρvw −ByBz, vBx − uBy, 0, vBz − wBy,

(E + p̄)v − (v ·B)By, (εe + pe)v)T

FIdeal
z = (ρw, ρwu−BzBx, ρwv −BzBy, ρw2 −B2

z + p̄, wBx − uBz, wBy − vBz,

0, (E + p̄)w − (v ·B)Bz, (εe + pe)w)T
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Variable Description

ρ(x, t) = ρi + ρe single fluid density
v(x, t) = (u, v, w)(x, t) single fluid velocity

B(x, t) = (Bx, By, Bz)(x, t) magnetic fields
E = p

(γ−1)
+ 1

2
(ρv · v + B ·B) total energy

p = pi + pe total pressure
p̄ = p + 1

2
B ·B pressure plus magnetic pressure

Ti = pi

ρi
, Te = pe

ρe
ion and electron non-dimensional Temperature

Pri = cpµi

κi
, P re = cpµe

κe
ion and electron Prandtl Number

η Magnetic resistivity
µi, µe ion and electron Viscosity

Svi = ρ0VAL0

µi
, Sve = ρ0VAL0

µe
ion and electron Viscous Lundquist number

Sr = µoVAL0

η
Resistive Lundquist number

cp Specific heat at constant pressure
V 2

A = B·B
µoρ

Alfven wave speed

A =

√
V 2

A

V 2
0

Alfven Number

Table 1: Variables and parameters used in the equations of single-fluid/two-
temperature compressible MHD.
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B: From two-fluid equations to one-fluid two-temperature
equations

The magnetohydrodynamic model treats the plasma as a single fluid. In the
following, we derive the single-fluid/two-temperature plasma equations from
the two fluids plasma equations. We denote the electron and ion masses by
m and M respectively. ni and ne are the ion and electron number density.
ji, je, Ti, Te, pi, pe and Ei, Ee are the current density, temperature pressure
and hydrodynamic energy density of ion and electron respectively. Etot and
εe are the total energy density and electron internal energy density.

We Define:

M = 1836n, ni = ne = n (23)

ρ = niM + nem = n(M + m) ≈ nM (24)

ji = nevi (25)

je = −neve (26)

j = ne(vi − ve) = ne(ji + je) (27)

p = pi + pe (28)

T =
Ti + Te

2
(29)

v =
n(Mvi + mve)

ρ

=
Mvi + mve

M + m
≈ vi +

m

M
ve ≈ vi (30)

vi ≈ v +
mj

Mne
≈ v (31)

ve ≈ v − j

ne
≈ − j

ne
(32)

Ei =
nkTi

γ − 1
+

1

2
nMv2

i (33)

Ee =
nkTe

γ − 1
+

1

2
nmv2

e (34)

Etot = Ei + Ee +
1

2
B2 (35)

εe =
nkTe

γ − 1
(36)

where γ = 5/3 and k is Boltzmann constant.
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We make following assumptions:
1. Quasineutral approximation.

n = ni = ne (37)

2. High collisionality. We assume both the electrons and ions are collision
dominated. The collisions rapidly randomize the distribution function giving
rise to an isotropic pressure.

3. Small Larmor radius.
Generalized Ohm’s Law:

E = ηj + v ×B +
j×B−∇pe

ne
(38)

With the ‘small Larmor radius’ approximation, the generalized Ohm’s
law is simplified as:

E = ηj− v ×B (39)

4. Electrons move much faster than ions.

|vi| ¿ |ve| (40)

Mass conservation

In two fluids plasma mass conservation equations, we have:

∂ni

∂t
+∇ · (nivi) = 0 (41)

∂ne

∂t
+∇ · (neve) = 0 (42)

By Multiplying the ion and electron masses M and m, respectively, and
adding above two equations together, we produce the ‘single-fluid mass con-
servation equation’,

∂n(M + m)

∂t
+∇ · [n(Mvi + mve)] =

∂ρ

∂t
+∇ · (ρv) = 0 (43)
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Momentum conservation

In two-fluids plasma, the momentum conservation equations are:

∂(nMvi)

∂t
+∇ · (nMviv

t
iI) = −∇pi + ne(E + vi ×B)

+∇ · (µiτi) (44)

∂(nmve)

∂t
+∇ · (nmvev

t
eI) = −∇pe − ne(E + ve ×B)

+∇ · (µeτe) (45)

where τi = (∂jvii + ∂ivij)− 2
3
∇ · viδij and τe = (∂jvei + ∂ivej)− 2

3
∇ · veδij.

By adding the above two equations together, we have:

∂(ρv)

∂t
+ ∇ · (nMviv

t
iI + nmvev

t
eI) ≈

∂(ρv)

∂t
+∇ · (ρvvtI)

= −∇(pi + pe) + ne(vi − ve)×B +∇ · (µiτi + µeτe)

= −∇p + j×B +∇ · (µiτi + µeτe) (46)

where we define p = pi + pe and j = ne(vi − ve).
Since j×B = 1

µo
(∇×B)×B = − 1

µo
∇ · (−BBt + 1

2
|B|2I), the combined

’single-fluid momentum conservation equation’ is obtained as following,

∂(ρv)

∂t
= −∇ · (ρvvt − BBt

µo

+ (p +
1

2µo

|B|2)I− µiτi − µeτe) (47)

After non-dimensionalization, we have:

∂(ρv)

∂t
= −∇ · (ρvvt −BBt + (p +

1

2
|B|2)I− 1

Svi

τi − 1

Sve

τe) (48)

where Svi = ρoVALo

µi
and Sve = ρoVALo

µe
.

Magnetic Field

∂B

∂t
= −∇× E (49)

where E = 1
σµo
∇×B− v ×B.

∂B

∂t
= −∇× (B× v +

1

σµo

∇×B) (50)
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where v = Mvi+mve

M+m
. After non-dimensionalization, we have,

∂B

∂t
= −∇× (B× v +

1

Sr

∇×B) (51)

where Sr = µoVALo/η.

Energy conservation

In two-fluids plasma energy conservation equations, we have:

∂Ei

∂t
+∇ · [(Ei + pi)vi] = ji · E +∇ · (µivi · τi + κi∇Ti) (52)

∂Ee

∂t
+∇ · [(Ee + pe)ve] = je · E +∇ · (µeve · τe + κe∇Te) (53)

By substituting vi ≈ v + mj
Mne

and ve ≈ v− j
ne

into the above two equations,
we have:

∂Ei

∂t
+∇ · [(Ei + pi)v] +

m

Mµone
∇ · [(Ei + pi)(∇×B)] =

ji · E +∇ · (µivi · τi + κi∇Ti) (54)

∂Ee

∂t
+∇ · [(Ee + pe)v]− 1

µone
∇ · [(Ee + pe)(∇×B)] =

je · E +∇ · (µeve · τe + κe∇Te) (55)

Adding the above two equations and considering in two-dimensional space,∇·
(∇×B) = 0, the above equation can be simplified as:

∂Etot

∂t
+ ∇ · [(Etot + p)v] = j · E
+ ∇ · (µivi · τi + µeve · τe + ki∇Ti + κe∇Te) (56)

Using the magnetic field equation obtained above, we have:

1

2

∂B2

∂t
= −B · ∇ × (B× v + η∇×B)

= −∇ · [(1
2
|B|2I −BBt) · v + ηj×B]− j · E (57)
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Adding the above two equations, we have:

∂Etot

∂t
+∇ · [(Etot + p)v] = j · E +∇ · (µivi · τi + µeve · τe + ki∇Ti + ke∇Te)

− ∇ · [(1
2
|B|2I −BBt) · v + ηj×B]− j · E (58)

Since

(∇×B)×B = B · ∇B−∇|B|
2

2
(59)

We have the combined energy conservation equation:

∂Etot

∂t
= −∇ · [(Etot + p)v + (

1

2
|B|2I −BBt) · v − µiv · τi − µev · τe

− ki∇Ti − ke∇Te + η(B · ∇B−∇|B|
2

2
)] (60)

After non-dimensionalization, we have,

∂Etot

∂t
= −∇ · [(Etot + p)v + (

1

2
|B|2I −BBt) · v − γ

SviPri

∇Ti − γ

SvePre

∇Te

− 1

Svi

v · τi − 1

Sve

v · τe +
1

Sr

(B · ∇B−∇|B|
2

2
)] (61)

where Pri = Cpµi

κi
and Pre = Cpµe

κe
.

Electron energy conservation

The electron energy conservation equation is:

∂εe

∂t
+∇ · [(εe + pe)ve] = ∇ · (κe∇Te) + µeτe : ∇ve + ve · ∇pe + ηj · j (62)

By substituting ve ≈ v − j
ne

into above equation, we have:

∂εe

∂t
+ ∇ · [(εe + pe)v]− 1

µone
∇ · [(εe + pe)(∇×B)]

= ∇ · (κe∇Te) + µeτe : ∇ve + v · ∇pe − (∇×B)

µone
· ∇pe + ηj · j(63)
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Considering the two-dimensional space, ∇· (∇×B) = 0 and (∇×B)
µone

·∇pe = 0,
above equation can be simplified:

∂εe

∂t
+ ∇ · [(εe + pe)v]

= ∇ · (κe∇Te) + µeτe : ∇v + v · ∇pe + ηj · j (64)

After non-dimensionalization, we have,

∂εe

∂t
= −∇ · [(εe + pe)v − γ

SvePre

∇Te]

+ v · ∇pe +
1

Sve

τe : ∇v +
1

Sr

(∇×B) · (∇×B) (65)
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